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Dr Louis Uccellini, the director of the
National Centers for Environmental
Prediction, could not come. He sends
his greetings and best wishes for the
success of the meeting.




Basics

# Earth simulation system as a tool for
# Regional climate studies
# Downscaling
#Seasonal forecasting

2 Requirements
# Outstanding issues

Zavisa Janjic [«] 3 [»]



Basics

# Earth simulation system
# Driving atmospheric model
»Modeling subsystems

2 Sufficient computing power

# Validation data and procedures
? Sufficient person-power

& Stable long term funding
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Driving Atmospheric Model

# Spatial scales?

» How regional is regional climate?
? Mountain — valley contrasts
& Urban —rural area contrasts

# Maritime — continental area contrasts
2.

2 Multiple scales, from meso to global
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Driving Atmospheric Model

2 Dynamics
# Nonhydrostatic (on the small scale end)
2 Global (on the large scale end)
JdSuitable for extended integrations

2Quadratic conservative

#Sufficiently accurate conservative, positive definite and
monotone tracer transport

2Minimum non-physical dissipation

2 Computationally efficient, scalable
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Communication between scales

» Communication between large scale and
regional models for driving nested models and
downscaling

#Can all the necessary information be passed
through lateral boundary conditions?

#Scale dependant nudging?
?Impact of the size of nested domain?
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Driving atmospheric model

2 Physics
& Converging with resolution

# Radiation formulation capable of interacting with
particulate and gaseous aerosols

? Processes at the lower boundary
2Turbulence

2 Moist processes (grid scale and convection)
capable of interacting with aerosols and radiation

2 Computationally efficient, scalable
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Driving Atmospheric Model

» Example of convergence problem with mass flux
moist convection schemes (Arakawa et al. 2011)
# Small fractional grid box cloudiness coverage assumed
2 At high resolutions entire grid box covered by clouds
2 No “environment” left

# Conventional mass flux scheme concepts (plume,
updrafts, downdrafts, entrainment, detrainment etc.)
do not work any more

2 No convergence of large scale mass flux schemes!
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Driving Atmospheric Model
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Fig. 3. Schematic illustration of typical vertical profiles of moist static energy source under
disturbed tropical conditions.
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Driving atmospheric model

» Example of convergence problem with
“nonlocal” PBL schemes

2 Adjustment schemes for convective BLs based on
observations and LES, very popular

2 Attempt to take into account vertical transports
by large eddies

2 At high resolutions model dynamics start resolving
large eddies

# Fundamental assumption not valid any more!
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Modeling subsystems

2 Aerosols
» Atmospheric chemistry
# Land surface and soil

# Land hydrology
& Surface
#Subsurface

2 Ocean
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Modeling subsystems: Aerosols

# Sources
? Uptake mechanisms
# Atmospheric transport

2 Interactions
2 Radiation
2 Microphysics
2 Deposition
? Dry, gravity, turbulence
?» Wet, grid scale precipitation, convection
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Modeling subsystems:

Land surface and soil

» Atmosphere exchanges energy through
surface

2 Are SVAT models with “sandwich” canopy
adequate?

2 Snow, age, density, heat conduction
2 Urban canopy representation?

# Numerical methods for non-stationary,
transitional regimes

S ““h.
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gflxbfr=-akhs* (g(lmhk)-gz0) *elwv

call vdifh

& (1lmhk,dtphys, thz0,gz0, akhs, ct, the, g, ¢, akh, z)
do 1=1, 1lmhk

cl=c (1)
t (1)=elocp*cl+ (the (1) /ape(l))
enddo

gflxaft=-akhs* (g (lmhk)-gz0) *elwv
dgflx=gflxaft-gflxbfr
sumdg=dgflx+sumdqg
1f (abs (gflxbfr).gt.l.e-2) then
rel=dgflx/qgflxbfr
else
rel=dgflx/gflxaft
endif
write (10,2000) kt,gflxbfr,gflxaft,dgflx,rel, sumdg
2000 format (' ',14,5el14.5)
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Modeling subsystems: Land Hydrology

# Horizontal movement of subsurface water often
ignored
# Do we know enough about it?

# Scale dependancy? Can it be ighored on some scales
and not on others

2 High resolution surface hydrology
# Statistical models

2 Dynamical models, SEVCC already pioneering
(Nickovic et al. 2010; Pejanovic et al. 2011)

2 Ignore surface runoff?
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Modeling subsystems: Ocean

# Significant feedback between atmosphere and
ocean
?|s ocean climatology sufficient?
2|s a surface water slab sufficient?

2 Full ocean model?
21s a coupled full ocean model affordable?

21s a data assimilation system needed to prevent the
ocean model from drifting away from climatology?
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Courtesy: Naomi Surgi

HYCOM T&E Katrina

Sea Surface Height (cm) Hurricane Katrina Aug 28 00002
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SST (a) before and (b) after
Katrina (Sun et al. 2006)
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Modeling subsystems: Ocean

# Ocean Ice (not much sea ice in SE Europe)
2 Climatology, prescribed properties?
2 Fully interacting ocean ice model?
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Modeling subsystems:

Atmospheric Chemistry

2 Very expensive

? Chemically inert strongly interacting species
(CO,)

2 Minimum # of chemically active strongly
interacting species (ozone)
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Computing resources

? No upper limit!
? Lower limit, to start with

#Based on time scales, 102 to 101 of what is
available at major climate centers
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Conclusions

# Good start

2 Wide range of issues to be addressed, lot of
work to be done

# Good luck!
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